Language: en
Pages: 244
Pages: 244
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of
Language: en
Pages: 308
Pages: 308
This volume includes the proceedings of a workshop on Invariant Theory held at Queen's University (Ontario). The workshop was part of the theme year held under the auspices of the Centre de recherches mathematiques (CRM) in Montreal. The gathering brought together two communities of researchers: those working in characteristic 0
Language: en
Pages: 200
Pages: 200
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore,
Language: en
Pages: 314
Pages: 314
"Geometric Invariant Theory" by Mumford/Fogarty (the firstedition was published in 1965, a second, enlarged editonappeared in 1982) is the standard reference on applicationsof invariant theory to the construction of moduli spaces.This third, revised edition has been long awaited for by themathematical community. It is now appearing in a completelyupdated and
Language: en
Pages: 366
Pages: 366
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner